北京单场电话号码是多少

首頁 | 滾動 | 國內 | 國際 | 運營 | 制造 | 終端 | 監管 | 原創 | 業務 | 技術 | 報告 | 博客 | 特約記者
手機 | 互聯網 | IT | 5G | 光通信 | LTE | 云計算 | 三網融合 | 芯片 | 電源 | 虛擬運營商 | 測試 | 移動互聯網 | 會展
首頁 >> 人工智能 >> 正文

半導體行業的"反潮流":人工智能如何定義下一代芯片?

2019年4月3日 07:57  鈦媒體  作 者:趙賽坡

某種意義上說,過去 50 年半導體行業的發展成為人類計算革命的燃料來源。

從概念上看,半導體又被理解為芯片,是一種高度小型化的電子產品,它可以非常快速地完成大量數學運算,利用這種計算可以在現實物理世界里完成目標。

簡而言之,芯片是為我們的電子設備的大腦。它們幫助計算機和其他機器評估替代品,為電話、計算機、汽車、飛機、互聯網提供計算能力。

半導體是在硅晶片上制造的非常復雜的物體。 這些晶圓的制造非常昂貴,前期投資需要數十億美元。人類社會過去 60 多年的偉大技術奇跡之一,就是不斷縮小芯片尺寸并不斷提升計算性能,也就是我們常說的「摩爾定律」。

在這個行業,能夠生產制造半導體的公司屈指可數,而且由于技術復雜,導致建造半導體工廠的成本直線上升,這也讓半導體行業形成獨特的商業模型,在整個鏈條上只有兩類公司:一類是芯片設計公司,如英特爾,另一類則是芯片設計公司和芯片代工公司,或者晶圓代工公司,下圖是 2018 年上半年全球十大代工廠。

不管摩爾定律是否失效,半導體行業依然在發展中,在通往 7 納米制程的道路上,目前只有臺積電、英特爾和三星,當然,英特爾目前也遭遇相當多的困難,這也意味著,從 PC 到互聯網,再到智能手機,隨著對計算性能要求的不斷提升,整個半導體行業的集中化趨勢,已經基本成定局。

從產業的角度去看,如今的半導體行業越來越像汽車行業,并購整合正在加速,盡管 2018 年博通收購高通、高通收購恩智浦都宣告失敗,但產業發展的趨勢不可避免,只有足夠的壟斷才能形成更大的議價權,未來三到五年,新的并購整合還將繼續。

一這兩年來,一股半導體行業的「反潮流」開始出現:自研芯片

智能手機領域,蘋果在 2008 年悄然收購了芯片制造商 P.A. Semi 公司,并在兩年后推出自研的第一代芯片 A4 處理器,這款處理器很快成為 iPhone、iPad 的標配產品,隨后,蘋果又在 Apple Watch、Apple TV 等產品里加入自主研發的處理器。另外,根據著名蘋果分析師郭明錤透露的消息,2020 年之后,蘋果將在 Mac 系列電腦里集成自己的芯片。

而 Google,則一直在推進數據中心的芯片研發。截止到 2018 年 11 月,Google 已經推出了三代 Tensor Process Unit(以下簡稱為 TPU),這些產品瞄準的是日益強烈的機器學習需求,從而也增加了 Google 在云端服務上的特定能力。

上述現象與半導體行業剛起步時非常相似,當時,所有的公司都在內部研發、制造芯片,隨著企業研發成本的上升,有的企業開始將芯片設計、生產分開,或者直接外包給第三方公司,這樣的分工協作也大大降低了成本。

但現在,越來越多的公司成為加入到「反潮流」的大軍里,蘋果、Google 除外,亞馬遜、微軟以及華為、阿里巴巴,都在暗自進行芯片的研發。

二而人工智能,也正在給半導體行業帶來新的變革機遇。

從最基本的角度去理解人工智能,或者準確說機器學習,它更像是一種高級的軟件形態,這個軟件上可以進行大量專業數學計算。以深度神經網絡來說,它是一種非常復雜的「投票」算法,通過對各個變量的權重進行復雜的計算,來實現決策。

機器學習或深度學習的過程,就是一次次的計算過程,如何才能提升計算速度呢?當然是讓計算并行化,這種需求也和圖像計算非常相似,盡管原理不一定相同,但事實也的確證明了,將圖像計算的處理器 GPU 放在機器學習之中,效果非常好,由此也造就了過去四年英偉達的「奇跡」。

但行業內除了英偉達之外,沒有人愿意看到只有 GPU 適合機器學習,從傳統芯片企業英特爾到互聯網巨頭 Google、Facebook、亞馬遜,都有著自己的考量。

而如果從 AI 芯片的功能層面來看,人工智能芯片主要有兩個方面的需求:訓練和推理。這兩個需求相互聯系,構成了人工智能芯片的完整流程。

先說訓練,當海量被標注的數據被收集到數據中心,工程師們就要開始「訓練」數據,簡而言之,就是在海量的數據中尋找可用的模型。

而推理,則是將模型反應出結果呈現出來,我們常常說所謂「機器決策」,也就是說,當用戶輸入一個不太明確的指令后,機器能夠給出一個看似合理的答案。

上面的兩段話有點復雜,不妨來看兩個案例,如果你在手機上用過 Google Photo,你會發現這個產品不僅會讓你照片備份起來,還會提供一系列有趣的功能,如下圖所示,你可以看到「往年今日」的推薦、以及可以直接用自然語言搜索圖片。

要實現 Google Photo 的上述功能,你需要將數據,也就是照片先上傳到 Google 服務器,經過一段時間之后才能看到上圖的推薦,這是因為,Google 的數據訓練都是在云端,而推理的結果則需要網絡的支持才能呈現出來,換句話說,你需要聯網才能使用。

蘋果的做法則完全不同。基于蘋果自主研發的芯片以及神經網絡處理引擎,目前 iPhone、iPad 都可以實現本地的 AI 計算,同樣是照片數據的訓練和推理,蘋果將所有的過程都放在本地設備,如下圖所示,你會看到也是類似的照片推薦、自然語言搜索等功能。

事實上,我們很難直接判斷哪種方式跟好,只能說,每一種方式都有著一定的使用范圍,比如在自動駕駛汽車上,人工智能芯片的處理過程必須放在本地,只有這樣,才能避免與云端交換數據的延時,也能避免車禍的發生。

從上述角度出發,AI 芯片領域有三類大市場:數據中心訓練、數據中心推理、設備/邊緣推理。

如果說過去的芯片行業像極了汽車行業,導致沒有后來者、創業者的機會,那么在 AI 芯片開創的三個領域里,卻提供了足夠多的想象空間,也讓資本市場看到了可能性,下圖還僅僅是截止到 2017 年的數據。

如果從 AI 芯片的三個大市場的角度去看未來的機會。

首先,數據中心 AI 芯片市場的競爭會非常激烈,一方面,CPU 不會輕易退出市場,另一方面,數據中心所有者都是全球云計算巨頭,包括亞馬遜、Google、微軟、阿里巴巴,他們對于 AI 芯片的需求當然非常強烈,但正如上文所言,他們正在自主研發自己的芯片,雖然這不代表這些公司不會采購第三方芯片,卻也展現出這個市場的特殊性。

其次,設備推理市場雖然規模巨大,但卻有著非常細分的領域,比如設備形態不同,導致應用場景、能耗的區別非常大,手機的推理能力與汽車顯然是不同的,這也導致這個市場最終會非常龐雜,當然,巨頭、創業公司都有機會在這個領域獲得一席之地。

當然,與傳統半導體行業類似,AI 芯片最終的走向依然會是寡頭化。

編 輯:值班記者
免責聲明:刊載本文目的在于傳播更多行業信息,不代表本站對讀者構成任何其它建議,請讀者僅作參考,更不能作為投資使用依據,請自行核實相關內容。
相關新聞              
 
人物
中國信通院敖立:我國固定寬帶全面進入“光網時代”
精彩專題
2019年世界移動大會
中興MWC19世界移動大會
2018年度中國光電纜優質供應商評選結果
聚焦2018年中國國際信息通信展
CCTIME推薦
關于我們 | 廣告報價 | 聯系我們 | 隱私聲明 | 本站地圖
CCTIME飛象網 CopyRight © 2007-2017 By CCTIME.COM
京ICP備08004280號  電信與信息服務業務經營許可證080234號 京公網安備110105000771號
公司名稱: 北京飛象互動文化傳媒有限公司
未經書面許可,禁止轉載、摘編、復制、鏡像
北京单场电话号码是多少